

GalnNAs, a Long Wavelength, Low Voltage Material for Optical Interconnects

- Scaled CMOS compatible (<1V)
- •Si substrate transparent
- Applicable to modulators, VCSELs and detectors
- •Compatible with telecommunications wavelengths

Approved for public release, distribution unlimited

J. Harris

Long Wavelength Devices for Si CMOS Integration

Quantum Well Modulator

VCSEL

MSN Photodetectors

Approved for public release, distribution unlimited

J. Harris & D. Miller

MQW DBR

Selective Area Epitaxy for Integrated Laser/Modulator

Modules

Objectives

- Monolithic integrated microelectronicphotonic systems for 10-100 GHz spectrum analysis
- Integrated on-chip generation, splitting, routing, modulation, heterodyning, and filtering of optical signals

Approach

- Selective-area MOCVD growth of engineered bandgap structures using a patterned oxide mask
- DBR diode laser master oscillator, slightly blue-shifted electroabsorption modulators, heavily blue-shifted (transparent) splitter and router waveguides

J.J. Coleman

DBR

MQW EA

Selective-area epitaxy (SAE) tunable narrow linewidth laser/electroabsorption modulator

SAE oxide mask pattern

SAE laser integrated with a splitter/router and dual modulators

Dual-Wavelength Ridge Waveguide DBR Lasers with

Tunable Mode Separation

- Common gain section and two separate DBR sections
- Relatively low coupling coefficient κ , in the front grating reduces the added cavity loss for the back grating mode
- Biasing the front DBR section results in tunable mode pair separations ($\Delta\lambda$) as small as 0.3 nm and as large as 6.9 nm

J.J. Coleman

8x8 Parallel Channel Receiver and Transmitter

Objective: high aggregate rate short range optical data links.

K. Choquette

Hybrid Packaged VCSEL/Driver Arrays

- 8x8 selectively oxidized 850 nm VCSEL array
- Four 16-channel MESFET driver arrays
- Wirebonded into 84 pin PGA package

K. Choquette

Monolithic 8x8 Array Photoreceiver

- 8x8 MSM detector array which matches the VCSEL array.
- 64 trans-impedance amplifiers are integrated on the periphery.
- Total power dissipation less than 2 W @ 3V.
- Uses GTL output level.
- MSM detectors integrated into a standard commercial GaAs MESFET process.

K. Choquette